Thursday, 5 March 2009

Backpropagation in Matlab

Following code is written in Matlab using back propagation algorithm for error propagation to hidden layers. It used batch update mode and has ability to work with N numbers of hidden layers also as many as required numbers of nodes in each hidden layer.

%References: Patterson, D. [Online]Available from: http://www.csee.umbc.edu/~dpatte3/nn/backprop.html [accessed 24 February 2009]
function MLPUsingBackpropagation()
[x1,x2,x3,x4,x5,x6,t] = textread('ex1-data.txt','%f %f %f %f %f %f %f');

trainingIndex=0;
testingIndex=0;
for i=1:265
if (rand > 0.2)
trainingIndex = trainingIndex + 1;
trainingInputs(trainingIndex,1) = x1(i);
trainingInputs(trainingIndex,2) = x2(i);
trainingInputs(trainingIndex,3) = x3(i);
trainingInputs(trainingIndex,4) = x4(i);
trainingInputs(trainingIndex,5) = x5(i);
trainingInputs(trainingIndex,6) = x6(i);

trainingOutputs(trainingIndex,1) = t(i);

else
testingIndex = testingIndex + 1;
testingInputs(testingIndex,1) = x1(i);
testingInputs(testingIndex,2) = x2(i);
testingInputs(testingIndex,3) = x3(i);
testingInputs(testingIndex,4) = x4(i);
testingInputs(testingIndex,5) = x5(i);
testingInputs(testingIndex,6) = x6(i);

testingOutput(testingIndex,1) = t(i);

end

end
%***** Memory Clean up **********
clear x1
clear x2
clear x3
clear x4
clear x5
clear x6
clear t
%********************************
layers = [6 23 23 1];

for i=1:50

Output = BackpropagationTraining(trainingInputs,trainingOutputs,0.1,0.05,0.01,layers);

OutputTesting = BackpropagationTesting(testingInputs, testingOutput, layers, Output.weights);
OutputTesting = BackpropagationTesting(testingInputs, testingOutput, layers, Output.bestweights);
end

%***** Memory Clean up **********
clear trainingInputs
clear testingInputs
clear layers
%********************************

end

function Results = BackpropagationTraining(inputs,targets,learningRate,momentumWeight,minimumMSE,layers)

[trainingDataCount,inputNodesCount] = size(inputs);
[targetDataCount,targetNodesCount] = size(targets);

if trainingDataCount ~= targetDataCount
error('BackpropagationTraining:TrainingAndTargetDataLengthMismatch', 'The number of input vectors and desired ouput vectors do not match');
end

if length(layers) < 3
error('BackpropagationTraining:InvalidNetworkStructure','The network must have at least 3 layers');
end

if inputNodesCount ~= layers(1)
msg = sprintf('Dimensions of input nodes (%d) does not match with numbers of input layer (%d).',inputNodesCount,layers(1));
error('BackpropagationTraining:InvalidInputLayerSize', msg);
end

if targetNodesCount ~= layers(end)
msg = sprintf('Dimensions of output nodes (%d) does not match with numbers of output layer (%d)',targetNodesCount,layers(end));
error('BackpropagationTraining:InvalidOutLayerSize', msg);
end

leayersLength = length(layers);

weights = cell(leayersLength-1,1);
for i=1:leayersLength-2
weights{i} = [-15 + 30 .* rand(layers(i+1),layers(i)+1); zeros(1,layers(i)+1)];
end
weights{end} = -15 + 30 .* rand(layers(end),layers(end-1)+1);

MSE = Inf;
epochs = 0;

activation = cell(leayersLength,1);
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is the input + 1 for the bias node activation
% activation{1} remains the same throught the computation
for i=2:leayersLength-1
activation{i} = ones(trainingDataCount,layers(i)+1); % inner layers include a bias node (trainingDataCount-by-Nodes+1)
end
activation{end} = ones(trainingDataCount,layers(end)); % no bias node at output layer

net = cell(leayersLength-1,1); % one net matrix for each layer exclusive input
for i=1:leayersLength-2;
net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node
end
net{end} = ones(trainingDataCount,layers(end));

previousDeltaW = cell(leayersLength-1,1);
sumDeltaW = cell(leayersLength-1,1);
for i=1:leayersLength-1
previousDeltaW{i} = zeros(size(weights{i})); % previousDeltaW starts at 0
sumDeltaW{i} = zeros(size(weights{i}));
end

lowestsse = 999999;
bestweights = weights;

while MSE > minimumMSE && epochs < 3000

for i=1:leayersLength-1
net{i} = activation{i} * weights{i}'; % compute inputs to current layer

if i < leayersLength-1 % inner layers
%a{i+1} = [2./(1+exp(-net{i}(:,1:end-1)))-1
%ones(trainingDataCount,1)]; % for bi-polar
activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1))) ones(trainingDataCount,1)]; % for sigmoid
%activation{i+1} = [(net{i}(:,1:end-1)) ones(trainingDataCount,1)]; %without sigmoid i.e for linear activation function
else % output layers
%a{i+1} = 2 ./ (1 + exp(-net{i})) - 1;
%activation{i+1} = 1 ./ (1 + exp(-net{i}));
%a{i+1} = net{i};
activation{end} = net{i} > 0;
end
end

% calculate sum squared error of all samples
err = (targets-activation{end}); % save this for later
sse = sum(sum(err.^2)); % sum of the error for all samples, and all nodes
if(lowestsse>sse)
lowestsse = sse;
bestweights = weights;
end

%delta = err .* (1 + a{end}) .* (1 - a{end});
%delta = err .* a{end} .* (1 - a{end});
%delta = err;
for
delta = err + weights{i}' weights{i};
for i=leayersLength-1:-1:1
sumDeltaW{i} = learningRate * delta' * activation{i};
if i > 1
%delta = (1+a{i}) .* (1-a{i}) .* (delta*weights{i});
delta = activation{i} .* (1-activation{i}) .* (delta*weights{i});
%delta = (delta*weights{i}); % where there is no activation
%function
end
end

% update the prev_w, weight matrices, epoch count and MSE
for i=1:leayersLength-1
previousDeltaW{i} = (sumDeltaW{i} ./ trainingDataCount) + (momentumWeight * previousDeltaW{i});
weights{i} = weights{i} + previousDeltaW{i};
end
epochs = epochs + 1;
MSE = sse/(trainingDataCount*targetNodesCount); % MSE = 1/trainingDataCount * 1/targetNodesCount * summed squared error
%MSEPerEpoch(epochs) = MSE;

end

%printing error
% hold on
% axis ( [0 3000 0 1]);
% x = 1:1:3000;
% plot(x,MSEPerEpoch);
% hold off
% s=input('Press enter to continue, enter 0 to stop \n');

% return the trained network
Results.structure = layers;
Results.weights = weights;
Results.bestweights = bestweights;
Results.epochs = epochs;
Results.MSE = MSE;
sse
lowestsse

end

function Results = BackpropagationTesting(inputs,targets,layers, weights)

[trainingDataCount,inputNodesCount] = size(inputs);
[targetDataCount,targetNodesCount] = size(targets);

if trainingDataCount ~= targetDataCount
error('BackpropagationTraining:TrainingAndTargetDataLengthMismatch', 'The number of input vectors and desired ouput vectors do not match');
end

leayersLength = length(layers);

activation = cell(leayersLength,1);
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is the input + 1 for the bias node activation
% activation{1} remains the same throught the computation
for i=2:leayersLength-1
activation{i} = ones(trainingDataCount,layers(i)+1); % inner layers include a bias node (trainingDataCount-by-Nodes+1)
end
activation{end} = ones(trainingDataCount,layers(end)); % no bias node at output layer

net = cell(leayersLength-1,1); % one net matrix for each layer exclusive input
for i=1:leayersLength-2;
net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node
end
net{end} = ones(trainingDataCount,layers(end));

for i=1:leayersLength-1
net{i} = activation{i} * weights{i}'; % compute inputs to current layer

if i < leayersLength-1 % inner layers
%a{i+1} = [2./(1+exp(-net{i}(:,1:end-1)))-1 ones(trainingDataCount,1)];
activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1))) ones(trainingDataCount,1)];
%a{i+1} = [(-net{i}(:,1:end-1)) ones(trainingDataCount,1)];
else % output layers
%a{i+1} = 2 ./ (1 + exp(-net{i})) - 1;
%activation{i+1} = 1 ./ (1 + exp(-net{i}));
activation{end} = net{i} > 0;
%a{i+1} = net{i};
end
end

%activation{end} = activation{end} > 0.5;
% calculate sum squared error of all samples
err = (targets-activation{end}); % save this for later
sse = sum(sum(err.^2)); % sum of the error for all samples, and all nodes

MSE = sse/(trainingDataCount*targetNodesCount); % MSE = 1/trainingDataCount * 1/targetNodesCount * summed squared error

% return the trained network
Results.MSE = MSE;
Results.sse = (sse/trainingDataCount)*100;
100-((sse/trainingDataCount)*100)

end

No comments:

Post a Comment